On the Generalized Spectrum of Linear Codes Associated to Grassmann Varieties and Schubert Varieties

Arunkumar R. Patil

S.G.G.S. Institute of Engineering and Technology, Vishnupuri, Nanded, India

2012 KIAS International Conference on Coding Theory and Applications, 2012
KIAS, Seoul, South Korea
November 15-17, 2012

This talk is based on the joint work with Sudhir Ghorpade and Harish Pillai carried out at IIT Bombay Mumbai and the ongoing work.

Linear Codes

\mathbb{F}_{q} : finite field with q elements.
$[n, k]_{q}$-code: a k-dimensional subspace of \mathbb{F}_{q}^{n}.
Hamming norm on \mathbb{F}_{q}^{n} :

$$
\|x\|=\left|\left\{i: x_{i} \neq 0\right\}\right|, \quad x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}
$$

For a subspace D of \mathbb{F}_{q}^{n},

$$
\|D\|=\mid\left\{i: \exists x \in D \text { such that } x_{i} \neq 0\right\} \mid .
$$

Let C be an $[n, k]_{q}$-code.
C nondegenerate if $C \nsubseteq$ a coordinate hyperplane. Minimum distance of C :

$$
d(C)=\min \{\|x\|: x \in C, x \neq 0\}
$$

r th higher weight of C :

$$
d_{r}(C)=\min \{\|D\|: D \subseteq C, \quad \operatorname{dim} D=r\}
$$

Weight Hierarchy of a Code

If C is a nondegenerate (linear) code of length n and dimension k, and if $d_{r}=d_{r}(C)$ denotes its r th higher weight, then we have:

$$
0=d_{0}<d_{1}<d_{2}<\cdots<d_{k-1}<d_{k}=n
$$

The set $\left\{d_{r}: 0 \leq r \leq k\right\}$ is its weight hierarchy of the code C.
$\mathbb{P}^{k-1}:=(k-1)$-dim projective space over \mathbb{F}_{q}. $[n, k]_{q}-$ projective system $X: A$ multi set of n points \mathbb{P}^{k-1}. X is nondegenerate if $X \nsubseteq$ any hyperplane.
Theorem
[Tsfasmann-Vlădut]: Equivalence classes of nondegenerate $[n, k]_{q}$-codes and nondegenerate $[n, k]_{q}$-projective systems are in 1-1 correspondence.

If $C=C_{X}$ arises from a nondegenerate projective system $X \hookrightarrow \mathbb{P}^{k-1}$, with $|X|=n$, then the higher weights correspond to maximal linear sections of X. More precisely,
$\left.d_{r}\left(C_{X}\right)=n-\max \{|X \cap E|: \operatorname{codim} E=r\} \cdot E \subseteq \mathbb{P}^{k-1}, \operatorname{codim} E=r\right\}$.
In particular,

$$
d\left(C_{X}\right)=n-\max \{|X \cap H|: H \text { hyperplane }\} .
$$

Generalized Spectrum of a Code

(usual) spectrum of $C:=$ the sequence $\left\{A_{i}(C)\right\}_{i=0}^{n}$, where, $A_{i}(C):=$ the number of codewords of weight i in C. r-th
generalized spectrum of $C:=$ the sequence $\left\{A_{i}^{r}(C)\right\}_{i=0}^{n}, 0 \leq r \leq k$, where

$$
A_{i}^{r}(C):=\#\{D: D \subseteq C, \operatorname{dim} D=r,\|D\|=i\}
$$

r-th weight distribution $:=A^{r}(Z)=A_{C}^{r}(Z)=\sum_{i=0}^{n} A_{i}^{r} Z^{i}$. Note that $A^{0}(Z)=1$ and $A_{i}^{1}=\frac{A_{i}(C)}{(q-1)}$.

If Generalized spectrum of a code is known, then complete weight hierarchy is known!

Grassmann Varieties

V : vector space of dimension m over a field.
For $1 \leq \ell \leq m$, we have the Grassmann variety:

$$
G_{\ell, m}=G_{\ell}(V):=\{\ell \text {-dimensional subspaces of } V\} .
$$

Plücker embedding:

$$
G_{\ell, m} \hookrightarrow \mathbb{P}^{k-1} \quad \text { where } \quad k:=\binom{m}{\ell} .
$$

Explicitly, the Plücker embedding is given as follows. Think of \mathbb{P}^{k-1} as $\mathbb{P}\left(\bigwedge^{\ell} V\right)$. Given any $W \in G_{\ell}(V)$, choose a basis $\left\{w_{1}, \ldots, w_{\ell}\right\}$ of W. Identify W with $w_{1} \wedge \cdots \wedge w_{\ell}$; the latter is uniquely determined up to multiplication by a nonzero constant.

In terms of coordinates, if we fix a basis $\left\{e_{1}, \ldots, e_{m}\right\}$ of V then $e_{\alpha}:=e_{\alpha_{1}} \wedge \cdots \wedge e_{\alpha_{\ell}}$ constitute a basis of $\wedge^{\ell} V$ as $\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right)$ varies over the indexing set $l(\ell, m)$ of all sequences $1 \leq \alpha_{1}<\cdots<\alpha_{\ell} \leq m$. If we write

$$
w_{1} \wedge \cdots \wedge w_{\ell}=\sum p_{\alpha} e_{\alpha},
$$

then $\left(p_{\alpha}\right)$ are the Plücker coordinates of W.
As a subset of $\mathbb{P}^{k-1}, G_{\ell, m}$ is given by the vanishing of certain quadratic homogeneous polynomials in the p_{α} 's with integer coefficients. Thus $G_{\ell, m}$ is a projective algebraic variety. Also, $G_{\ell, m}$ is defined over \mathbb{F}_{q}.
The number of \mathbb{F}_{q}-rational points of $G_{\ell, m}$ is given by the Gaussian binomial coefficient

$$
\left[\begin{array}{c}
m \\
\ell
\end{array}\right]_{q}:=\frac{\left(q^{m}-1\right)\left(q^{m}-q\right) \cdots\left(q^{m}-q^{\ell-1}\right)}{\left(q^{\ell}-1\right)\left(q^{\ell}-q\right) \cdots\left(q^{\ell}-q^{\ell-1}\right)} .
$$

Grassmann Codes

Thanks to the Plücker embedding,

$$
G_{\ell, m}\left(\mathbb{F}_{q}\right) \hookrightarrow \mathbb{P}^{k-1} \rightsquigarrow[n, k]_{q^{-}} \text {-code } C(\ell, m)
$$

where the length n and the dimension k are:

$$
n=\left[\begin{array}{c}
m \\
\ell
\end{array}\right]_{q} \quad \text { and } \quad k=\binom{m}{\ell} .
$$

Theorem [Ryan (1990), Nogin (1996)]:

$$
d(C(\ell, m))=q^{\delta} \text { where } \delta:=\ell(m-\ell) .
$$

More generally, for $1 \leq r \leq \mu$ we have

$$
d_{r}(C(\ell, m))=q^{\delta}+q^{\delta-1}+\cdots+q^{\delta-r+1},
$$

where $\mu:=\max \{\ell, m-\ell\}+1$.
[[Nogin (1996)];[Ghorpade-Lachaud(2000)]
Thus the complete weight hierrachy of $C(2,4)$ is known!
Theorem [Hansen-Johnsen-Ranestad] On the other hand, for $0 \leq r \leq \mu$,

$$
d_{k-r}(C(\ell, m))=n-\left(1+q+\cdots+q^{r-1}\right) .
$$

e.g. If $\ell=5, m=10$, then $k=\binom{10}{5}=252, \mu=6$. We know the higher weights $d_{1}, d_{2}, \cdots, d_{6}$ and d_{246}, \cdots, d_{252} due to above results. But, not complete weight hierarchy!

Problem 1: Determine all the higher weights d_{r}, $0 \leq r \leq k$, of the Grassmann code $C(\ell, m)$.

Schubert Codes

Let α be in $I(\ell, m)$, that is,

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{\ell}\right) \in \mathbb{Z}^{\ell}, 1 \leq \alpha_{1}<\cdots<\alpha_{\ell} \leq m
$$

Consider the corresponding Schubert variety

$$
\Omega_{\alpha}:=\left\{W \in G_{\ell, m}: \operatorname{dim}\left(W \cap A_{\alpha_{i}}\right) \geq i \forall i\right\}
$$

where A_{j} is the span of the first j vectors in a fixed basis of our m-space. We have

$$
\Omega_{\alpha}\left(\mathbb{F}_{q}\right) \hookrightarrow \mathbb{P}^{k_{\alpha}-1} \rightsquigarrow\left[n_{\alpha}, k_{\alpha}\right]_{q} \text {-code } C_{\alpha}(\ell, m)
$$

where

$$
n_{\alpha}=\left|\Omega_{\alpha}\left(\mathbb{F}_{q}\right)\right| \text { and } k_{\alpha}=|\{\beta \in I(\ell, m): \beta \leq \alpha\}|
$$

with \leq being the componentwise partial order.

Length of Schubert Codes

- If $\ell=2$ and $\alpha=(m-h-1, m)$, then

$$
\begin{array}{ll}
n_{\alpha}=\frac{\left(q^{m}-1\right)\left(q^{m-1}-1\right)}{\left(q^{2}-1\right)(q-1)}-\sum_{j=1}^{h} \sum_{i=1}^{j} q^{2 m-j-2-i} \text { and } \\
k_{\alpha}=\frac{m(m-1)}{2}-\frac{h(h+1)}{2} . & {[\text { Hao Chen (2000)] }}
\end{array}
$$

- In general,

$$
n_{\alpha}=\sum \prod_{i=0}^{\ell-1}\left[\begin{array}{c}
\alpha_{i+1}-\alpha_{i} \\
k_{i+1}-k_{i}
\end{array}\right]_{q} q^{\left(\alpha_{i}-k_{i}\right)\left(k_{i+1}-k_{i}\right)}
$$

where the sum is over $\left(k_{1}, \ldots, k_{\ell-1}\right) \in \mathbb{Z}^{\ell}$ satisfying
$i \leq k_{i} \leq \alpha_{i}$ and $k_{i} \leq k_{i+1}$ for $1 \leq i \leq \ell-1$; by
convention, $\alpha_{0}=0=k_{0}$ and $k_{\ell}=\ell . \quad[V i n c e n t i ~(2001)]$

- $n_{\alpha}=\sum_{\beta \leq \alpha} q^{\delta_{\beta}}, \quad$ where $\quad \delta_{\beta}=\sum_{i=1}^{\ell}\left(\beta_{i}-i\right)$.

Higher Weights of Schubert Codes

Proposition [Ghorpade-Lachaud(2000)]:

$$
d\left(C_{\alpha}(\ell, m)\right) \leq q^{\delta_{\alpha}} \text { where } \delta_{\alpha}:=\sum_{i=1}^{\ell}\left(\alpha_{i}-i\right) .
$$

Minimum Distance Conjecture (MDC) [Ghorpade]:

$$
d\left(C_{\alpha}(\ell, m)\right)=q^{\delta_{\alpha}} .
$$

- True if $\alpha=(m-\ell+1, \ldots, m-1, m)$. [Nogin]
- True if $\ell=2$. [Hao Chen (2000)]; and independently, [Guerra-Vincenti (2002)].
- MDC is true, in general [Xu Xiang (2007)]

Only minimum weight is known!
Problem 2: Determine all the higher weights d_{r}, $0 \leq r \leq k$, of the Scubert Code code $C_{\alpha}(\ell, m)$.

Back to Higher Weights of Grassmann Codes

Recall: $\mu:=\max \{\ell, m-\ell\}+1$ and
Theorem
[Nogin (1996)] and [Ghorpade-Lachaud (2000)]. For $1 \leq r \leq \mu$, we have

$$
d_{r}(C(\ell, m))=q^{\delta}+q^{\delta-1}+\cdots+q^{\delta-r+1}
$$

Theorem
[Hansen-Johnsen-Ranestad] On the other hand, for $0 \leq r \leq \mu$,

$$
d_{k-r}(C(\ell, m))=n-\left(1+q+\cdots+q^{r-1}\right) .
$$

These result cover several initial and terminal elements of the weight hierarchy of $C(\ell, m)$. Yet, a considerable gap remains.

Example:

$(\ell, m)=(2,5)$. Here $k=10, \mu=4$ and we know:

$$
d_{1}, \ldots, d_{4} \text { as well as } d_{6}, \ldots, d_{10} .
$$

But d_{5} seems to be unknown.
Example: $(\ell, m)=(2,6)$. Here $k=15, \mu=5$ and d_{6}, \ldots, d_{9} are not known.
For $C(2, m)$ with $m \geq 2$, the values of d_{r} for $m \leq r<\binom{m-1}{2}$ do not seem to be known.
Theorem (Hansen-Johnsen-Ranestad)

$$
d_{5}(C(2,5))=q^{6}+q^{5}+2 q^{4}+q^{3}=d_{4}+q^{4}
$$

Our First Progress

S.R.Ghorpade, A. R. Patil, Harish K. Pillai, Decomposable subspaces, linear sections of Grassmann varieties, and higher weights of Grassmann codes, Finite Fields and Their Applications, 15 (2009), 54-68.

Decomposable Subspaces and Structure Theorem:

- A vector $\omega \in \Lambda^{\ell} V$ is said to be decomposable, if $\omega=v_{1} \wedge v_{2} \wedge \cdots \wedge v_{\ell}$ for some $v_{1}, v_{2}, \cdots, v_{\ell} \in V$.
- A subspace of $\bigwedge^{\ell} V$ is said to be decomposable, if all of its nonzero elements are decomposable.
- $V_{\omega}:=\{v \in V: v \wedge \omega=0\}$ for any $\omega \in \Lambda^{\ell} V$.
- A Subspace E of $\bigwedge^{\ell} V$ of dimension r is said to be close of type I if there are $\ell+r-1$ linearly independent vectors $f_{1}, \cdots, f_{\ell-1}, g_{1}, \cdots g_{r}$ such that
$E=\operatorname{span}\left\{f_{1} \wedge \cdots \wedge f_{\ell-1} \wedge g_{i}: i=1,2, \cdots r\right\}$
- E is said to be close of type II if there exists $\ell+1$ linearly independent elements $u_{1}, \cdots, u_{\ell-r+1}, g_{1}, \cdots, g_{r}$ such that $E=\operatorname{span}\left\{u_{1} \wedge \cdots \wedge u_{\ell-r+1} \wedge g_{1} \wedge \cdots \wedge \check{g}_{i} \wedge \cdots \wedge g_{r}: i=\right.$ $1, \cdots, r\}$, where \check{g}_{i} indicates g_{i} is deleted.
- Close subspace:= type I or Type II.

Structure Theorem E is decomposable $\Longleftrightarrow E$ is closed.
Corollary: $\bigwedge^{\ell} V$ has a decomposable subspace of dimension r
$\Longleftrightarrow r \leq \mu$, where $\mu=\max \{\ell, m-\ell\}+1$.

- Structure Theorem + Corollary gives d_{r} and d_{k-r} for $r \leq \mu$
- Structure Theorem + Corollary does not give d_{r} and d_{k-r} for $r>\mu$!

Lemma: Every $\mu+1$ dimensional subspace of $\Lambda^{\ell} V$ contains at most $q^{\mu}+q^{3}-q^{2}-1$ decomposable vectors.

Lemma + Griesmer-Wei bound gives $d_{\mu+1}$ and $d_{k-\mu-1}$.

Complete weight hierarchy of $C(2,5)$ is known!
In the case of $C(2,6)$, we have $k=15$ and $\mu=5$. The previous results give us d_{1}, \ldots, d_{5} and also d_{10}, \ldots, d_{15}. The above results yield the values of d_{6} and d_{9}. But d_{7} and d_{8} are not covered.

We have to do something more!

Our Second Progress

S.R.Ghorpade, A. R. Patil, Harish K. Pillai, Subclose families, threshold graphs, and the weight hierarchy of Grassmann and Schubert Codes, Contemporary Mathematics, American Mathematical Society, Vol. 487 (2009), 87-99.

Given any family $\Lambda=\left\{\alpha^{(1)}, \ldots, \alpha^{(r)}\right\}$ of ℓ-subsets of $\{1, \ldots, m\}$, let

$$
K_{\wedge}:=\sum_{1 \leq i<j \leq r}\left|\alpha^{(i)} \cap \alpha^{(j)}\right| .
$$

For $0 \leq r \leq k$, define

$$
K_{r}:=\max \left\{K_{\Lambda}: \Lambda \subseteq I(\ell, m),|\Lambda|=r\right\} .
$$

Given any $\Lambda \subseteq I(\ell, m)$ with $|\Lambda|=r$, we say that Λ ie a subclose family if $K_{\Lambda}=K_{r}$.

Observe that a close family is subclose. However, subclose families of cardinality r exist for every $r \leq k:=\binom{m}{\ell}$.
Fact: Given any $\Lambda \subseteq I(\ell, m)$, if we let $\Lambda^{c}:=I(\ell, m) \backslash \Lambda$, then

Λ is subclose $\Longleftrightarrow \Lambda^{c}$ is subclose.

When $r>\mu$, there is no close family of cardinality r and this is partly a reason why the methods discussed above do not extend in the general case. Using the notion of Subclose family, we give the following conjecturs.

Conjecture

For any positive integer $r \leq k$, the higher weights d_{r} of $C(\ell, m)$ are attained by linear sections of $G(\ell, m)$ by projective linear subspaces corresponding to subclose families of $I(\ell, m)$.

It may be noted, however, that for general r, the sections of $G(\ell, m)$ by subspaces Π_{Λ} corresponding to subclose families Λ may be of varying cardinality, and it is necessary to choose a maximal family in order to determine the higher weight. Thus, the above conjecture narrows the search for a likely value of d_{r} but gives no specific information in general. With this in view, we propose the following explicit conjectural formula in certain special cases.

Conjecture

Let $\mu=\max \{\ell, m-\ell\}+1$ and $\delta=\ell(m-\ell)$. Then the $(\mu+j)$ th higher weight of the Grassmann code $C(\ell, m)$ is given by

$$
d_{\mu+j}=d_{\mu+j-1}+q^{\delta-(j+1)} \quad \text { for } j=1,2, \ldots, m-\ell .
$$

Consequently, for $j=1,2, \ldots, m-\ell$, we have

$$
d_{\mu+j}=\left(q^{\delta}+q^{\delta-1}+\cdots+q^{\delta-\mu+1}\right)+\left(q^{\delta-2}+q^{\delta-3}+\cdots+q^{\delta-(j+1)}\right)
$$

Complete weight hierarchy of $C(2,6)$ and $C(2,7)$ is known!

Our Third Progress

S.R.Ghorpade, T. Johansen, A. R. Patil, Harish K. Pillai, Higher weights of Grassmann codes in terms of properties of Schubert unions, arXive:1105.0087v1 [math.AG], 30 April, 2011.

In this paper we give an explicite algorithm to determine the complete weight hierarchy of $C(2, m)$ using so called Young tableaux and Schubert unions.
For any $k \in \mathbb{Z}^{+}$, its partition:= a weakly decreasing sequence of nonnegative integers $\lambda=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{t}\right)$ such that $k=\lambda_{1}+\lambda_{2}+\cdots+\lambda_{t}=|\lambda|$.
The set $\left\{(i, j) \in \mathbb{Z}^{2}: 1 \leq i \leq t, 1 \leq j \leq \lambda_{i}\right\}$ is called the Ferrer's diagram or Young diagram of shape λ where (i, j) is the cell in row i and column j.

A partition can be described by its Young diagram (Ferrer's diagram) which consists of t rows, with the first row containing λ_{1} boxes, the second row containing λ_{2} boxes, etc. For example, $\lambda=(5,3,2,2)$ is drawn as follows.

Area of Young Tableaux: $=$ Number of boxes (i.e. k) Subtableaux: $=$ For a number $r<k$, a tableaux T with partition $\chi=\left(\chi_{1}, \ldots, \chi_{t}\right)$ if $\chi_{1} \leq \lambda_{1}, \chi_{2} \leq \lambda_{2}, \ldots, \chi_{t} \leq \lambda_{t}$ and $\chi_{1}+\chi_{2}+\ldots+\chi_{t}=r$.

Recipe for complete weight hierarchy of $C(2, m)$

- Associate to $C(2, m)$ a specific strict Young tableaux Y with a special filling: $m-1$ boxes in first row, $m-2$ boxes in the second row, and so on down to one box in the $(m-1)$ th row.
- For fixed $r, 1 \leq r \leq k$, choose a family of strict subtableux $\mathcal{F}=\left\{T_{1}, T_{2}, \ldots, T_{p}\right\}$ with area r.
- Find $a_{i h}:=$ The number of times that i occurs in the h th subtableaux $T_{h} \in \mathcal{F}$.
- Associate $\gamma_{h}=\sum_{i} a_{i h} q^{i}$ to the subtableaux T_{h} for each h.
- Find $g^{r}(2, m)=\max _{h} \gamma_{h}$.
- $d_{k-r}=n-g^{r}(2, m)$

Complete weight hierarchy of $C(2,6)$

Here $m=6, k=15, \mu=5$ and $\delta=8$. We have the following diagram. (filling explained as above)

0	1	2	3	4
2	3	4	5	
4	5	6		
6	7			
8				

e.g. Let $r=4$. We have two strict subtableau,

$T_{1}=$| 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | , and $T_{2}=$| 0 | 1 | 2 |
| :--- | :--- | :--- |
| 2 | | | . We have,

$\gamma_{1}=1+q+q^{2}+q^{3}$ and $\gamma_{2}=1+q+2 q^{2}$. Hence, we have
$g^{4}(2,6)=\max \left\{\gamma_{1}, \gamma_{2}\right\}=\gamma_{1}=1+q+q^{2}+q^{3}$. Therefore,
$d_{11}=d_{15-4}=n-\gamma_{1}=n-\left(1+q+q^{2}\right)=$
$q^{9}+2 q^{8}+3 q^{7}+4 q^{6}+5 q^{5}+4 q^{4}+5 q^{3}+2 q^{2}+q$.

Cont.

r	$g^{r}(2, m)$	$d_{k-r}=n-g^{r}(2, m)$
0	0	n
1	1	$n-1$
2	$1+q$	$n-(1+q)$
3	$1+q+q^{2}$	$n-\left(1+q+q^{2}\right)$
4	$1+q+q^{2}+q^{3}$	$n-\left(1+q+q^{2}+q^{3}\right)$
5	$1+q+q^{2}+q^{3}+q^{4}$	$n-\left(1+q+q^{2}+q^{3}+q^{4}\right)$
6	$1+q+2 q^{2}+q^{3}+q^{4}$	$q^{3}+2 q^{4}+2 q^{5}+2 q^{6}+q^{7}+q^{8}$
7	$1+q+2 q^{2}+2 q^{3}+q^{4}$	$2 q^{4}+2 q^{5}+2 q^{6}+q^{7}+q^{8}$
8	$1+q+2 q^{2}+2 q^{3}+2 q^{4}$	$q^{4}+2 q^{5}+2 q^{6}+q^{7}+q^{8}$
9	$1+q+2 q^{2}+2 q^{3}+2 q^{4}+q^{5}$	$q^{4}+q^{5}+2 q^{6}+q^{7}+q^{8}$
10	$1+q+2 q^{2}+2 q^{3}+2 q^{4}+q^{5}+q^{6}$	$q^{4}+q^{5}+q^{6}+q^{7}+q^{8}$
11	$1+q+2 q^{2}+2 q^{3}+3 q^{4}+q^{5}+q^{6}$	$q^{5}+q^{6}+q^{7}+q^{8}$
12	$1+q+2 q^{2}+2 q^{3}+3 q^{4}+2 q^{5}+q^{6}$	$q^{6}+q^{7}+q^{8}$
13	$1+q+2 q^{2}+2 q^{3}+3 q^{4}+2 q^{5}+2 q^{6}$	$q^{7}+q^{8}$
14	$1+q+2 q^{2}+2 q^{3}+3 q^{4}+2 q^{5}+2 q^{6}+q^{7}$	q^{8}
15	$1+q+2 q^{2}+2 q^{3}+3 q^{4}+2 q^{5}+2 q^{6}+q^{7}+q^{8}$	0

Back to Generalized Spectrum

Recall that (usual) spectrum of $C:=$ the sequence $\left\{A_{i}(C)\right\}_{i=0}^{n}$, where, $A_{i}(C):=$ the number of codewords of weight i in C.
r-th generalized spectrum of $C:=$ the sequence $\left\{A_{i}^{r}(C)\right\}_{i=0}^{n}, 0 \leq r \leq k$, where

$$
A_{i}^{r}(C):=\#\{D: D \subseteq C, \operatorname{dim} D=r,\|D\|=i\}
$$

- Nogin gave usual spectrum of $C(2, m)$.
- Vincenti-Montanucci computed r th generalized spectrum of $C(2,4)$ using the work of Tallini (1974) for some r.

Here we complete and correct their calculations and give an alternative method to compute the generalized spectrum of $C(2,4)$ (In progress for publication).

Theorem The generalized spectrum $\left\{A_{i}^{r}\right\} 0 \leq r \leq k$ $0 \leq i \leq n$ of $C(2,4)$ is:

- $r=1 . \quad A_{q^{4}}{ }^{1}=A_{d_{1}}^{1}=q^{4}+q^{3}+2 q^{2}+q+1$;

$$
A_{q^{4}+q^{2}}^{1}=q^{5}-q^{2} ; \text { and } A_{i}{ }^{1}=0, \text { elsewhere. }
$$

- $r=2 \quad A_{q^{4}+q^{3}}^{2}=A_{d_{2}}{ }^{2}=\left(q^{3}+q^{2}+q+1\right)\left(q^{2}+q+1\right) ;$
$A_{q^{4}+q^{3}+q^{2}-q}^{2}=\frac{q^{4}}{2\left(q^{4}+q^{3}+2 q^{2}+q+1\right)}$;
$A_{q^{4}+q^{3}+q^{2}}^{2}=A_{d_{3}}^{2}=\left(q^{3}-q^{3}\right)\left(q^{2}+1\right)\left(q^{2}+q+1\right) ;$
$A_{q^{4}+q^{3}+q^{2}+q}^{2}=\frac{q^{4}}{2\left(q^{3}-1\right)(q-1)}$;
$A_{i}^{2}=0 ; \quad$ elsewhere.
- $r=3$

$$
\begin{aligned}
& A_{q^{4}+q^{3}+q^{2}}^{3}=A_{d_{3}}{ }^{3}=2\left(q^{3}+q^{2}+q+1\right) ; \\
& A_{q^{4}+q^{3}+2 q^{2}-q}^{3}=\frac{q^{2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{2} ; \\
& A_{n-(q+1)}^{3}=q^{4}\left(q^{3}-1\right)\left(q^{2}+1\right)+\left(q^{4}-1\right)\left(q^{2}+q+1\right) ; \\
& A_{n-1}^{3}=\frac{q^{2}\left(q^{4}+1\right)\left(q^{2}-q+1\right)-2 q^{3}}{2} ; \\
& A_{i}^{3}=0 ; \quad \text { elsewhere. }
\end{aligned}
$$

Theorem (cont...)

- $r=4$

$$
\begin{gathered}
A_{q^{4}+q^{3}+2 q^{2}}^{4}=A_{d_{4}}^{4}=\left(q^{2}+1\right)\left(q^{2}+q+1\right)(q+1) ; \\
A_{(n-2)}^{4}=\frac{q^{4}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{2} ; \\
A_{(n-1)}^{4}=q\left(q^{4}+1\right)\left(q^{4}+q+1\right)(q-1) ; \\
A_{n-0}^{4}=\frac{q^{4}(q-1)\left(q^{3}-1\right)}{2} ; \\
A_{i}^{4}=0 ; \quad \text { elsewhere. }
\end{gathered}
$$

- $r=5$

$$
\begin{gathered}
A_{q^{4}+q^{3}+2 q^{2}+q}^{5}=A_{d_{5}}^{4}=\left(q^{2}+1\right)\left(q^{2}+q+1\right) \\
A_{i}^{5}=0 ; \quad \text { elsewhere }
\end{gathered}
$$

- $r=6$

$$
\begin{aligned}
& A_{q^{4}+q^{3}+2 q^{2}+q+1}=1 \\
& A_{i}^{6}=0 ; \quad \text { elsewhere }
\end{aligned}
$$

Outline of the Proof

A quadric Q_{N} in $\mathbb{P}^{N}:=V(F)$, where

$$
F=\sum_{i=0}^{N} a_{i} x_{i}^{2}+\sum_{i<j} a_{i j} x_{i} x_{j}
$$

F nondegenerate := If $F \nsim$ a form in less than $(N+1)$ variables. Q_{N} nonsingular $:=$ If F is nondegenerate.
For N even, $Q_{N} \sim P_{N}=V\left(x_{0}^{2}+x_{1} x_{2}+\ldots+x_{N-1} x_{N}\right)$,
For N odd, $Q_{N} \sim H_{N}=V\left(x_{0} x_{1}+x_{2} x_{3}+\ldots+x_{N-1} x_{M}\right)$, or $Q_{N} \sim E_{N}=V\left(f\left(x_{0}, x_{1}\right)+x_{2} x_{3}+\ldots+x_{N-1} x_{N}\right)$, $f\left(x_{0}, x_{1}\right)=$ irreducible quadratic form over \mathbb{F}_{q}.
Generator := Subspace of maximum dimension on W_{N} (general quadric). Projective Index $(g):=$ Dimension of a generator. Character $(w):=w\left(Q_{N}\right)=2 g-N+3$.

Number of sections of nonsingular quadrics

$S(m, t, v ; N, w):=\left\{\Pi_{m}: \Pi_{m} \cap Q_{N}=\Pi_{m-t-1} Q_{t}\right\}$. where $w\left(Q_{N}\right)=w\left(Q_{t}\right) N(m, t, v ; N, w):=\# S(m, t, v ; N, w)$. Proposition 1 [Hirschfeld, Thas] [Chapter 22, General Galois Geometry]:

$$
\begin{aligned}
& N(m, t, v ; N, w)=q^{\frac{1}{2}\left\{T[t+1+v w(2-v)(2-w)]-v(2-v)(w-1)^{2}\right\}} \times \\
& {\left[\frac{1}{2}\left\{T+v+\left(1+3 v-2 v^{2}\right) w-v(2-v) w^{2}\right\}, \frac{1}{2}(N+1-w)\right]_{+} \times} \\
& {\left[\frac{1}{2}\left\{T+2-v-\left(1-5 v+2 v^{2}\right) w-v(2-v) w^{2}\right\}, \frac{1}{2}(N-1+w)\right] .} \\
& \left\{\left[v(2-v), \frac{1}{2}(t+1-v)\right]_{+}\left[1, \frac{1}{2}(t-1+v)\right][1, m-t]_{-}\right\},
\end{aligned}
$$

where

$$
T=N+t-2 m
$$

Theorem 2 [Nogin]

The generalized spectrum $\left\{A_{i}^{r}\right\}$ of the code C associated with Q_{k-1} in \mathbb{P}^{k-1} is given by

- $A_{i}^{r}=N(k-r-1, t, v ; k-1, w)$
if $i=n-\tau(k-r-t-2, t, v)$ for some t, v such that $k-r-1 \geq t \geq \max \{k-2 r-1+|w-v|, 1-v\}$,

$$
v=0 \text { or } 2, t \equiv 1(\bmod 2)
$$

- $A_{i}^{r}=\sum_{t} N(k-r-1, t, v ; k-1, w)$,
if $i=n-\theta_{k-r-2}$, where t runs over odd integers such that

$$
k-r-1 \geq t \geq \max \{k-2 r-1+|w-v|, 0\}
$$

- $A_{i}^{r}=0$, elsewhere.

Observation:

- $G(2,4)$ is the hyperbolic quadric (Klien quadric) in \mathbb{P}^{5}.
- $g=2, w=2$
- $C(2,4)$ has $n=\left|Q_{5}\left(\mathbb{F}_{q}\right)\right|=\theta_{4}+q^{2}=q^{4}+q^{3}+2 q^{2}+q+1$ and $k=6$.

Theorem $1+$ Theorem $2+$ The observation =complete weight hierarchy of $C(2,4)$
e.g. For $r=3, v=2, t=1$, we have
$i=n-(2 q+1)=q^{4}+q^{3}+2 q^{2}-q$ and

$$
\begin{gathered}
A_{q^{4}+q^{3}+2 q^{2}-q}=\frac{q^{2}}{2}\left(q^{2}+1\right)(q+1)^{2}\left(q^{2}+q+1\right) . \\
\text { Q.E.D. }
\end{gathered}
$$

Future Plan and scope to collaborate

- Complete weight hierrachy of $C(\ell, m)$
- Complete weight hierrachy of Schubert codes
- Generalized spectrum of $C(2, m)$ and then $C(\ell, m)$
- Usual spectrum of Schubert codes

Thank You

