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Linear Codes
Fq : finite field with q elements.
[n, k]q-code: a k-dimensional subspace of Fn

q.
Hamming norm on Fn

q:

‖x‖ = |{i : xi 6= 0}|, x = (x1, . . . , xn) ∈ Fn
q.

For a subspace D of Fn
q,

‖D‖ = |{i : ∃ x ∈ D such that xi 6= 0}|.

Let C be an [n, k]q-code.
C nondegenerate if C 6⊆ a coordinate hyperplane. Minimum
distance of C :

d(C ) = min{‖x‖ : x ∈ C , x 6= 0}.

r th higher weight of C :

dr (C ) = min{‖D‖ : D ⊆ C , dim D = r}.



Weight Hierarchy of a Code

If C is a nondegenerate (linear) code of length n and
dimension k , and if dr = dr (C ) denotes its r th higher weight,
then we have:

0 = d0 < d1 < d2 < · · · < dk−1 < dk = n.

The set {dr : 0 ≤ r ≤ k} is its weight hierarchy of the code C .

Pk−1 := (k − 1)-dim projective space over Fq.
[n, k]q− projective system X : A multi set of n points Pk−1.
X is nondegenerate if X 6⊆ any hyperplane.

Theorem
[Tsfasmann-Vlăduţ]: Equivalence classes of nondegenerate
[n, k]q-codes and nondegenerate [n, k]q-projective systems are
in 1− 1 correspondence.



If C = CX arises from a nondegenerate projective system
X ↪→ Pk−1, with |X | = n, then the higher weights correspond
to maximal linear sections of X . More precisely,

dr (CX ) = n−max{|X∩E | : codimE = r}.E ⊆ Pk−1, codimE = r}.

In particular,

d(CX ) = n −max{|X ∩ H | : H hyperplane}.



Generalized Spectrum of a Code

(usual) spectrum of C := the sequence {Ai(C )}ni=0, where,
Ai(C ) := the number of codewords of weight i in C . r -th

generalized spectrum of C := the sequence
{Ar

i (C )}ni=0, 0 ≤ r ≤ k , where

Ar
i (C ) := #{D : D ⊆ C , dim D = r , ||D|| = i}

r -th weight distribution := Ar (Z ) = Ar
C (Z ) =

n∑
i=0

Ar
i Z

i . Note

that A0(Z ) = 1 and A1
i = Ai (C)

(q−1)
.

If Generalized spectrum of a code is known, then complete
weight hierarchy is known!



Grassmann Varieties

V : vector space of dimension m over a field.
For 1 ≤ ` ≤ m, we have the Grassmann variety:

G`,m = G`(V ) := {`-dimensional subspaces of V }.

Plücker embedding:

G`,m ↪→ Pk−1 where k :=

(
m

`

)
.

Explicitly, the Plücker embedding is given as follows. Think of
Pk−1 as P(

∧` V ). Given any W ∈ G`(V ), choose a basis
{w1, . . . ,w`} of W . Identify W with w1 ∧ · · · ∧ w`; the latter
is uniquely determined up to multiplication by a nonzero
constant.



In terms of coordinates, if we fix a basis {e1, . . . , em} of V
then eα := eα1 ∧ · · · ∧ eα` constitute a basis of

∧` V as
α = (α1, . . . , α`) varies over the indexing set I (`,m) of all
sequences 1 ≤ α1 < · · · < α` ≤ m. If we write

w1 ∧ · · · ∧ w` =
∑

pαeα,

then (pα) are the Plücker coordinates of W .
As a subset of Pk−1, G`,m is given by the vanishing of certain
quadratic homogeneous polynomials in the pα’s with integer
coefficients. Thus G`,m is a projective algebraic variety. Also,
G`,m is defined over Fq.
The number of Fq-rational points of G`,m is given by the
Gaussian binomial coefficient[

m

`

]
q

:=
(qm − 1)(qm − q) · · · (qm − q`−1)

(q` − 1)(q` − q) · · · (q` − q`−1)
.



Grassmann Codes

Thanks to the Plücker embedding,

G`,m(Fq) ↪→ Pk−1  [n, k]q-code C (`,m)

where the length n and the dimension k are:

n =

[
m

`

]
q

and k =

(
m

`

)
.

Theorem [Ryan (1990), Nogin (1996)]:

d (C (`,m)) = qδ where δ := `(m − `).



More generally, for 1 ≤ r ≤ µ we have

dr (C (`,m)) = qδ + qδ−1 + · · ·+ qδ−r+1,

where µ := max{`,m − `}+ 1.
[[Nogin (1996)];[Ghorpade-Lachaud(2000)]

Thus the complete weight hierrachy of C (2, 4) is known!

Theorem [Hansen-Johnsen-Ranestad ] On the other hand,

for 0 ≤ r ≤ µ,

dk−r (C (`,m)) = n − (1 + q + · · ·+ qr−1).

e.g. If ` = 5,m = 10, then k =
(

10
5

)
= 252, µ = 6. We know

the higher weights d1, d2, · · · , d6 and d246, · · · , d252 due to
above results. But, not complete weight hierarchy!

Problem 1: Determine all the higher weights dr ,
0 ≤ r ≤ k , of the Grassmann code C (`,m).



Schubert Codes
Let α be in I (`,m), that is,

α = (α1, . . . , α`) ∈ Z`, 1 ≤ α1 < · · · < α` ≤ m.

Consider the corresponding Schubert variety

Ωα := {W ∈ G`,m : dim(W ∩ Aαi
) ≥ i ∀i},

where Aj is the span of the first j vectors in a fixed basis of
our m-space. We have

Ωα(Fq) ↪→ Pkα−1  [nα, kα]q-code Cα(`,m)

where

nα = |Ωα(Fq)| and kα = |{β ∈ I (`,m) : β ≤ α}|,

with ≤ being the componentwise partial order.



Length of Schubert Codes

I If ` = 2 and α = (m − h − 1,m), then

nα = (qm−1)(qm−1−1)
(q2−1)(q−1)

−
∑h

j=1

∑j
i=1 q2m−j−2−i and

kα = m(m−1)
2
− h(h+1)

2
. [Hao Chen (2000)]

I In general,

nα =
∑ `−1∏

i=0

[
αi+1 − αi

ki+1 − ki

]
q

q(αi−ki )(ki+1−ki )

where the sum is over (k1, . . . , k`−1) ∈ Z` satisfying
i ≤ ki ≤ αi and ki ≤ ki+1 for 1 ≤ i ≤ `− 1; by
convention, α0 = 0 = k0 and k` = `. [Vincenti (2001)]

I nα =
∑
β≤α

qδβ , where δβ =
∑̀
i=1

(βi − i).

[Ghorpade-Tsfasman (2005)]



Higher Weights of Schubert Codes
Proposition [Ghorpade-Lachaud(2000)]:

d (Cα(`,m)) ≤ qδα where δα :=
∑̀
i=1

(αi − i).

Minimum Distance Conjecture (MDC) [Ghorpade]:

d (Cα(`,m)) = qδα .

I True if α = (m − ` + 1, . . . ,m − 1,m). [Nogin]
I True if ` = 2. [Hao Chen (2000)];

and independently, [Guerra-Vincenti (2002)].
I MDC is true, in general [Xu Xiang (2007)]

Only minimum weight is known!

Problem 2: Determine all the higher weights dr ,
0 ≤ r ≤ k , of the Scubert Code code Cα(`,m).



Back to Higher Weights of Grassmann Codes

Recall: µ := max{`,m − `}+ 1 and
Theorem
[Nogin (1996)] and [Ghorpade-Lachaud (2000)]. For
1 ≤ r ≤ µ, we have

dr (C (`,m)) = qδ + qδ−1 + · · ·+ qδ−r+1.

Theorem
[Hansen-Johnsen-Ranestad ] On the other hand, for
0 ≤ r ≤ µ,

dk−r (C (`,m)) = n − (1 + q + · · ·+ qr−1).

These result cover several initial and terminal elements of the
weight hierarchy of C (`,m). Yet, a considerable gap remains.



Example:

(`,m) = (2, 5). Here k = 10, µ = 4 and we know:

d1, . . . , d4 as well as d6, . . . , d10.

But d5 seems to be unknown.
Example: (`,m) = (2, 6). Here k = 15, µ = 5 and d6, . . . , d9

are not known.
For C (2,m) with m ≥ 2, the values of dr for m ≤ r <

(
m−1

2

)
do not seem to be known.
Theorem (Hansen-Johnsen-Ranestad)

d5(C (2, 5)) = q6 + q5 + 2q4 + q3 = d4 + q4.



Our First Progress

S.R.Ghorpade, A. R. Patil, Harish K. Pillai, Decomposable
subspaces, linear sections of Grassmann varieties, and higher

weights of Grassmann codes, Finite Fields and Their
Applications, 15 (2009), 54-68.

Decomposable Subspaces and Structure Theorem:

I A vector ω ∈
∧` V is said to be decomposable, if

ω = v1 ∧ v2 ∧ · · · ∧ v` for some v1, v2, · · · , v` ∈ V .

I A subspace of
∧` V is said to be decomposable, if all of

its nonzero elements are decomposable.

I Vω := {v ∈ V : v ∧ ω = 0} for any ω ∈
∧` V .

I A Subspace E of
∧` V of dimension r is said to be close

of type I if there are `+ r − 1 linearly independent vectors
f1, · · · , f`−1, g1, · · · gr such that
E = span{f1 ∧ · · · ∧ f`−1 ∧ gi : i = 1, 2, · · · r}



I E is said to be close of type II if there exists `+ 1 linearly
independent elements u1, · · · , u`−r+1, g1, · · · , gr such that
E = span{u1 ∧ · · · ∧ u`−r+1 ∧ g1 ∧ · · · ∧ ǧi ∧ · · · ∧ gr : i =
1, · · · , r}, where ǧi indicates gi is deleted.

I Close subspace:= type I or Type II.

Structure Theorem E is decomposable ⇐⇒ E is closed.

Corollary:
∧` V has a decomposable subspace of dimension r

⇐⇒ r ≤ µ, where µ = max{`,m − `}+ 1.

I Structure Theorem+ Corollary gives dr and dk−r for r ≤ µ

I Structure Theorem + Corollary does not give dr and dk−r

for r > µ!



Lemma: Every µ + 1 dimensional subspace of
∧` V contains

at most qµ + q3 − q2 − 1 decomposable vectors.

Lemma + Griesmer-Wei bound gives dµ+1 and dk−µ−1.

Complete weight hierarchy of C (2, 5) is known!

In the case of C (2, 6), we have k = 15 and µ = 5. The
previous results give us d1, . . . , d5 and also d10, . . . , d15. The
above results yield the values of d6 and d9. But d7 and d8 are
not covered.

We have to do something more!



Our Second Progress

S.R.Ghorpade, A. R. Patil, Harish K. Pillai, Subclose families,
threshold graphs, and the weight hierarchy of Grassmann and
Schubert Codes, Contemporary Mathematics, American

Mathematical Society, Vol. 487 (2009), 87-99.

Given any family Λ = {α(1), . . . , α(r)} of `-subsets of
{1, . . . ,m}, let

KΛ :=
∑

1≤i<j≤r

|α(i) ∩ α(j)|.

For 0 ≤ r ≤ k , define

Kr := max {KΛ : Λ ⊆ I (`,m), |Λ| = r} .

Given any Λ ⊆ I (`,m) with |Λ| = r , we say that Λ ie a
subclose family if KΛ = Kr .



Observe that a close family is subclose. However, subclose
families of cardinality r exist for every r ≤ k :=

(
m
`

)
.

Fact: Given any Λ ⊆ I (`,m), if we let Λc := I (`,m) \ Λ, then

Λ is subclose ⇐⇒ Λc is subclose.

When r > µ, there is no close family of cardinality r and this
is partly a reason why the methods discussed above do not
extend in the general case. Using the notion of Subclose
family, we give the following conjecturs.

Conjecture
For any positive integer r ≤ k, the higher weights dr of
C (`,m) are attained by linear sections of G (`,m) by projective
linear subspaces corresponding to subclose families of I (`,m).



It may be noted, however, that for general r , the sections of
G (`,m) by subspaces ΠΛ corresponding to subclose families Λ
may be of varying cardinality, and it is necessary to choose a
maximal family in order to determine the higher weight. Thus,
the above conjecture narrows the search for a likely value of dr

but gives no specific information in general. With this in view,
we propose the following explicit conjectural formula in certain
special cases.

Conjecture
Let µ = max{`,m − `}+ 1 and δ = `(m − `). Then the
(µ + j)th higher weight of the Grassmann code C (`,m) is
given by

dµ+j = dµ+j−1 + qδ−(j+1) for j = 1, 2, . . . ,m − `.

Consequently, for j = 1, 2, . . . ,m − `, we have

dµ+j =
(
qδ + qδ−1 + · · ·+ qδ−µ+1

)
+
(
qδ−2 + qδ−3 + · · ·+ qδ−(j+1)

)
.



Complete weight hierarchy of C (2, 6) and C (2, 7) is known!



Our Third Progress

S.R.Ghorpade, T. Johansen, A. R. Patil, Harish K. Pillai,
Higher weights of Grassmann codes in terms of properties of

Schubert unions, arXive:1105.0087v1 [math.AG], 30
April, 2011.

In this paper we give an explicite algorithm to determine the
complete weight hierarchy of C (2,m) using so called Young
tableaux and Schubert unions.
For any k ∈ Z+, its partition:= a weakly decreasing sequence
of nonnegative integers λ = (λ1, λ2, · · · , λt) such that
k = λ1 + λ2 + · · ·+ λt = |λ|.
The set {(i , j) ∈ Z2 : 1 ≤ i ≤ t, 1 ≤ j ≤ λi} is called the
Ferrer’s diagram or Young diagram of shape λ where (i , j) is
the cell in row i and column j .



A partition can be described by its Young diagram (Ferrer’s
diagram) which consists of t rows, with the first row
containing λ1 boxes, the second row containing λ2 boxes, etc.
For example, λ = (5, 3, 2, 2) is drawn as follows.

Area of Young Tableaux: = Number of boxes (i.e. k)
Subtableaux:= For a number r < k , a tableaux T with
partition χ = (χ1, . . . , χt) if χ1 ≤ λ1, χ2 ≤ λ2, . . . , χt ≤ λt
and χ1 + χ2 + . . . + χt = r .



Recipe for complete weight hierarchy of C (2,m)

I Associate to C (2,m) a specific strict Young tableaux Y
with a special filling: m − 1 boxes in first row, m − 2
boxes in the second row, and so on down to one box in
the (m − 1)th row.

I For fixed r , 1 ≤ r ≤ k , choose a family of strict
subtableux F = {T1,T2, . . . ,Tp} with area r .

I Find aih:= The number of times that i occurs in the hth
subtableaux Th ∈ F .

I Associate γh =
∑
i

aihqi to the subtableaux Th for each h.

I Find g r (2,m) = max
h
γh.

I dk−r = n − g r (2,m)



Complete weight hierarchy of C (2, 6)

Here m = 6, k = 15, µ = 5 and δ = 8. We have the following
diagram. (filling explained as above)

0 1 2 3 4
2 3 4 5
4 5 6
6 7
8

e.g. Let r=4. We have two strict subtableau,

T1 = 0 1 2 3 , and T2 =
0 1 2
2

. We have,

γ1 = 1 + q + q2 + q3 and γ2 = 1 + q + 2q2. Hence, we have
g 4(2, 6) = max{γ1, γ2} = γ1 = 1 + q + q2 + q3. Therefore,
d11 = d15−4 = n − γ1 = n − (1 + q + q2) =
q9 + 2q8 + 3q7 + 4q6 + 5q5 + 4q4 + 5q3 + 2q2 + q.



Cont..

r g r (2,m) dk−r = n − g r (2,m)
0 0 n
1 1 n − 1
2 1 + q n − (1 + q)

3 1 + q + q2 n − (1 + q + q2)

4 1 + q + q2 + q3 n − (1 + q + q2 + q3)

5 1 + q + q2 + q3 + q4 n − (1 + q + q2 + q3 + q4)

6 1 + q + 2q2 + q3 + q4 q3 + 2q4 + 2q5 + 2q6 + q7 + q8

7 1 + q + 2q2 + 2q3 + q4 2q4 + 2q5 + 2q6 + q7 + q8

8 1 + q + 2q2 + 2q3 + 2q4 q4 + 2q5 + 2q6 + q7 + q8

9 1 + q + 2q2 + 2q3 + 2q4 + q5 q4 + q5 + 2q6 + q7 + q8

10 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6 q4 + q5 + q6 + q7 + q8

11 1 + q + 2q2 + 2q3 + 3q4 + q5 + q6 q5 + q6 + q7 + q8

12 1 + q + 2q2 + 2q3 + 3q4 + 2q5 + q6 q6 + q7 + q8

13 1 + q + 2q2 + 2q3 + 3q4 + 2q5 + 2q6 q7 + q8

14 1 + q + 2q2 + 2q3 + 3q4 + 2q5 + 2q6 + q7 q8

15 1 + q + 2q2 + 2q3 + 3q4 + 2q5 + 2q6 + q7 + q8 0



Back to Generalized Spectrum

Recall that (usual) spectrum of C := the sequence
{Ai(C )}ni=0, where, Ai(C ) := the number of codewords of
weight i in C .
r -th generalized spectrum of C := the sequence
{Ar

i (C )}ni=0, 0 ≤ r ≤ k , where

Ar
i (C ) := #{D : D ⊆ C , dim D = r , ||D|| = i}

I Nogin gave usual spectrum of C (2,m).

I Vincenti-Montanucci computed r th generalized spectrum
of C (2, 4) using the work of Tallini (1974) for some r .

Here we complete and correct their calculations and give an
alternative method to compute the generalized spectrum of
C (2, 4) (In progress for publication).



Theorem The generalized spectrum {Ar
i } 0 ≤ r ≤ k

0 ≤ i ≤ n of C (2, 4) is:

I r = 1. Aq4
1 = A1

d1
= q4 + q3 + 2q2 + q + 1;

A1
q4+q2 = q5 − q2; and Ai

1 = 0, elsewhere.

I r = 2 A2
q4+q3 = Ad2

2 = (q3 + q2 + q + 1)(q2 + q + 1);

A2
q4+q3+q2−q = q4

2(q4+q3+2q2+q+1)
;

A2
q4+q3+q2 = A2

d3
= (q3−q3)(q2 +1)(q2 +q +1);

A2
q4+q3+q2+q = q4

2(q3−1)(q−1)
;

A2
i = 0; elsewhere.

I r = 3
A3
q4+q3+q2 = Ad3

3 = 2(q3 + q2 + q + 1);

A3
q4+q3+2q2−q = q2(q+1)2(q2+1)(q2+q+1)

2
;

A3
n−(q+1) = q4(q3−1)(q2+1)+(q4−1)(q2+q+1);

A3
n−1 = q2(q4+1)(q2−q+1)−2q3

2
;

A3
i = 0; elsewhere.



Theorem (cont...)

I r = 4
A4
q4+q3+2q2 = A4

d4 = (q2 + 1)(q2 + q + 1)(q + 1);

A4
(n−2) = q4(q2+1)(q2+q+1)

2
;

A4
(n−1) = q(q4 + 1)(q4 + q + 1)(q − 1);

A4
n−0 = q4(q−1)(q3−1)

2
;

A4
i = 0; elsewhere.

I r = 5

A5
q4+q3+2q2+q = A4

d5 = (q2 + 1)(q2 + q + 1);

A5
i = 0; elsewhere.

I r = 6
A6
q4+q3+2q2+q+1 = 1;

A6
i = 0; elsewhere.



Outline of the Proof

A quadric QN in PN := V (F ), where

F =
N∑
i=0

aix
2
i +

∑
i<j

aijxixj

F nondegenerate := If F 6∼ a form in less than (N + 1)
variables. QN nonsingular := If F is nondegenerate.
For N even, QN ∼ PN = V (x2

0 + x1x2 + . . . + xN−1xN),
For N odd, QN ∼ HN = V (x0x1 + x2x3 + . . . + xN−1xM),or
QN ∼ EN = V (f (x0, x1) + x2x3 + . . . + xN−1xN),
f (x0, x1) = irreducible quadratic form over Fq.
Generator := Subspace of maximum dimension on WN

(general quadric). Projective Index (g) := Dimension of a
generator. Character (w) := w(QN) = 2g − N + 3.



Number of sections of nonsingular quadrics

S(m, t, v ; N ,w) := {Πm : Πm ∩ QN = Πm−t−1Qt} . where
w (QN) = w (Qt) N(m, t, v ; N ,w) := #S(m, t, v ; N ,w).
Proposition 1 [Hirschfeld, Thas] [Chapter 22, General Galois
Geometry]:

N(m, t, v ;N,w) = q
1
2{T [t+1+vw(2−v)(2−w)]−v(2−v)(w−1)2} ×[

1

2

{
T + v + (1 + 3v − 2v2)w − v(2− v)w2

}
,
1

2
(N + 1− w)

]
+

×[
1

2

{
T + 2− v − (1− 5v + 2v2)w − v(2− v)w2

}
,
1

2
(N − 1 + w)

]
−
÷{[

v(2− v),
1

2
(t + 1− v)

]
+

[
1,

1

2
(t − 1 + v)

]
[1,m − t]−

}
,

where
T = N + t − 2m



Theorem 2 [Nogin]

The generalized spectrum {Ar
i } of the code C associated with

Qk−1 in Pk−1 is given by

I Ar
i = N(k − r − 1, t, v ; k − 1,w)

if i = n − τ(k − r − t − 2, t, v) for some t, v such that
k − r − 1 ≥ t ≥ max{k − 2r − 1 + |w − v |, 1− v},

v = 0 or 2, t ≡ 1(mod2)

I Ar
i =

∑
t

N(k − r − 1, t, v ; k − 1,w),

if i = n − θk−r−2, where t runs over odd integers such
that

k − r − 1 ≥ t ≥ max{k − 2r − 1 + |w − v |, 0}

I Ar
i = 0, elsewhere.



Observation:

I G (2, 4) is the hyperbolic quadric (Klien quadric) in P5.

I g = 2,w = 2

I C (2, 4) has
n = |Q5(Fq)| = θ4 + q2 = q4 + q3 + 2q2 + q + 1 and
k = 6.

Theorem 1 + Theorem 2 + The observation =complete
weight hierarchy of C (2, 4)

e.g. For r = 3, v = 2, t = 1, we have
i = n − (2q + 1) = q4 + q3 + 2q2 − q and

A3
q4+q3+2q2−q =

q2

2
(q2 + 1)(q + 1)2(q2 + q + 1).

Q.E.D.



Future Plan and scope to collaborate

I Complete weight hierrachy of C (`,m)

I Complete weight hierrachy of Schubert codes

I Generalized spectrum of C (2,m) and then C (`,m)

I Usual spectrum of Schubert codes



Thank You


